GIEC OpenIR
Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts
Liu, Qiying1,2,3,6; Wang, Haiyong1,2,3,4; Xin, Haosheng1,2,3,4; Wang, Chenguang1,2,3; Yan, Long1,2,3; Wang, Yingxiong5; Zhang, Qi1,2,3; Zhang, Xinghua1,2,3; Xu, Ying1,2,3; Huber, George W.7; Ma, Longlong1,2,3
2019-07-25
Source PublicationCHEMSUSCHEM
ISSN1864-5631
Pages12
Corresponding AuthorMa, Longlong(mall@ms.giec.ac.cn)
AbstractEthanol is an important bulk chemical with diverse applications. Biomass-derived ethanol is traditionally produced by fermentation. Direct cellulose conversion to ethanol by chemocatalysis is particularly promising but remains a great challenge. Herein, a one-pot hydrogenolysis of cellulose into ethanol was developed by using graphene-layers-encapsulated nickel (Ni@C) catalysts with the aid of H3PO4 in water. The cellulose was hydrolyzed into glucose, which was activated by forming cyclic di-ester bonds between the OH groups of H3PO4 and glucose, promoting ethanol formation under the synergistic hydrogenation of Ni@C. A 69.1 % yield of ethanol (carbon mole basis) was obtained, which is comparable to the theoretical value achieved by glucose fermentation. An ethanol concentration of up to 8.9 wt % was obtained at an increased cellulose concentration. This work demonstrates a chemocatalytic approach for the high-yield production of ethanol from renewable cellulosic biomass at high concentration.
Keywordbiomass cellulose ethanol H3PO4 nickel
DOI10.1002/cssc.201901110
WOS KeywordLIGNOCELLULOSIC BIOMASS ; CONVERSION ; HYDRODEOXYGENATION ; TRANSFORMATION ; HYDROGENATION ; DURABILITY ; CHEMICALS ; SORBITOL ; LAYER ; FUELS
Indexed BySCI
Language英语
Funding ProjectNational Natural Science Foundation of China[51536009] ; National Natural Science Foundation of China[51576199] ; Natural Science Foundation of Guangdong Province[2017A030308010] ; DNL Cooperation Fund, CAS[DNL180302] ; National Key R&D Program of China[2018YFB1501402] ; National Key R&D Program of China[2017YFE0106600] ; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program[2017BT01N092]
WOS Research AreaChemistry ; Science & Technology - Other Topics
Funding OrganizationNational Natural Science Foundation of China ; Natural Science Foundation of Guangdong Province ; DNL Cooperation Fund, CAS ; National Key R&D Program of China ; Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program
WOS SubjectChemistry, Multidisciplinary ; Green & Sustainable Science & Technology
WOS IDWOS:000479334500001
PublisherWILEY-V C H VERLAG GMBH
Citation statistics
Cited Times:52[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.giec.ac.cn/handle/344007/25506
Collection中国科学院广州能源研究所
Corresponding AuthorMa, Longlong
Affiliation1.Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangzhou 510640, Guangdong, Peoples R China
2.CAS Key Lab Renewable Energy, Guangzhou 510640, Guangdong, Peoples R China
3.Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Guangdong, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Shanxi, Peoples R China
6.Dalian Natl Lab Clean Energy, Dalian 116023, Peoples R China
7.Univ Wisconsin, Dept Chem & Biol Engn, 1415 Engn Dr, Madison, WI 53706 USA
First Author AffilicationGuangZhou Institute of Energy Conversion,Chinese Academy of Sciences
Recommended Citation
GB/T 7714
Liu, Qiying,Wang, Haiyong,Xin, Haosheng,et al. Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts[J]. CHEMSUSCHEM,2019:12.
APA Liu, Qiying.,Wang, Haiyong.,Xin, Haosheng.,Wang, Chenguang.,Yan, Long.,...&Ma, Longlong.(2019).Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts.CHEMSUSCHEM,12.
MLA Liu, Qiying,et al."Selective Cellulose Hydrogenolysis to Ethanol Using Ni@C Combined with Phosphoric Acid Catalysts".CHEMSUSCHEM (2019):12.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Liu, Qiying]'s Articles
[Wang, Haiyong]'s Articles
[Xin, Haosheng]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Qiying]'s Articles
[Wang, Haiyong]'s Articles
[Xin, Haosheng]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Qiying]'s Articles
[Wang, Haiyong]'s Articles
[Xin, Haosheng]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.