GIEC OpenIR
In situ growing of CoO nanoparticles on g-C3N4 composites with highly improved photocatalytic activity for hydrogen evolution
Liu, Xuecheng1,2; Zhang, Qian1; Liang, Liwei1; Chen, Lintao2; Wang, Yuyou1; Tan, Xiaoqing1; Wen, Li1; Huang, Hongyu2
2019-07-26
Source PublicationROYAL SOCIETY OPEN SCIENCE
ISSN2054-5703
Volume6Issue:7Pages:10
Corresponding AuthorLiu, Xuecheng(liuxc@ctbu.edu.cn)
AbstractCoO/g-C3N4 hybrid catalyst is facilely prepared for application to photocatalytic H-2 evolution from water splitting by the vacuum rotation-evaporation and in situ thermal method. The physical and chemical properties of CoO/g-C3N4 are determined by a series of characterization methods. The g-C3N4 with 0.6 wt% Co loading exhibits superior photocatalytic hydrogen evolution activity with an H-2 evolution amount of 23.25 mmol g(-1) after 5 h. The obtained 0.6 wt% CoO/g-C3N4 can split water to generate 0.39 mmol g(-1) H-2 without sacrificial agent and noble metal, while the pure g-C3N4 is inactive under the same reaction conditions. The remarkable enhancement of photocatalytic H-2 evolution activity of CoO/g-C3N4 composites is mainly ascribed to the effective separation of electron-hole pairs and charge transfer. The work creates new opportunities for the design of low-cost g-C3N4-based photocatalysts with high photocatalytic H-2 evolution activity from overall water splitting.
KeywordCoO nanoparticle photocatalytic hydrogen production g-C3N4
DOI10.1098/rsos.190433
WOS KeywordONE-STEP SYNTHESIS ; FACILE SYNTHESIS ; GRAPHITIC C3N4 ; CARBON DOTS ; Z-SCHEME ; WATER ; EFFICIENT ; PERFORMANCE ; TIO2 ; HETEROSTRUCTURE
Indexed BySCI
Language英语
Funding ProjectGuangdong Provincial Key Laboratory of New and Renewable Energy Research and Development[Y807s21001] ; Research Foundation for Talented Scholars[1856012]
WOS Research AreaScience & Technology - Other Topics
Funding OrganizationGuangdong Provincial Key Laboratory of New and Renewable Energy Research and Development ; Research Foundation for Talented Scholars
WOS SubjectMultidisciplinary Sciences
WOS IDWOS:000479146300058
PublisherROYAL SOC
Citation statistics
Cited Times:20[WOS]   [WOS Record]     [Related Records in WOS]
Document Type期刊论文
Identifierhttp://ir.giec.ac.cn/handle/344007/25481
Collection中国科学院广州能源研究所
Corresponding AuthorLiu, Xuecheng
Affiliation1.Chongqing Technol & Business Univ, Coll Environm & Resources, Engn Res Ctr Waste Oil Recovery Technol & Equipme, Chongqing Key Lab Catalysis & New Environm Mat, Chongqing 400067, Peoples R China
2.Chinese Acad Sci, Guangzhou Inst Energy Convers, Guangdong Prov Key Lab New & Renewable Energy Res, Guangzhou 510640, Guangdong, Peoples R China
First Author AffilicationGuangZhou Institute of Energy Conversion,Chinese Academy of Sciences
Recommended Citation
GB/T 7714
Liu, Xuecheng,Zhang, Qian,Liang, Liwei,et al. In situ growing of CoO nanoparticles on g-C3N4 composites with highly improved photocatalytic activity for hydrogen evolution[J]. ROYAL SOCIETY OPEN SCIENCE,2019,6(7):10.
APA Liu, Xuecheng.,Zhang, Qian.,Liang, Liwei.,Chen, Lintao.,Wang, Yuyou.,...&Huang, Hongyu.(2019).In situ growing of CoO nanoparticles on g-C3N4 composites with highly improved photocatalytic activity for hydrogen evolution.ROYAL SOCIETY OPEN SCIENCE,6(7),10.
MLA Liu, Xuecheng,et al."In situ growing of CoO nanoparticles on g-C3N4 composites with highly improved photocatalytic activity for hydrogen evolution".ROYAL SOCIETY OPEN SCIENCE 6.7(2019):10.
Files in This Item:
There are no files associated with this item.
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Liu, Xuecheng]'s Articles
[Zhang, Qian]'s Articles
[Liang, Liwei]'s Articles
Baidu academic
Similar articles in Baidu academic
[Liu, Xuecheng]'s Articles
[Zhang, Qian]'s Articles
[Liang, Liwei]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Liu, Xuecheng]'s Articles
[Zhang, Qian]'s Articles
[Liang, Liwei]'s Articles
Terms of Use
No data!
Social Bookmark/Share
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.