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a b s t r a c t

Cellulase was covalently immobilized on a smart polymer, Eudragit L-100 by carbodiimide coupling.
Using data of central composite design, response surface methodology (RSM) and artificial neural net-
work (ANN) were developed to investigate the effect of pH, carbodiimide concentration, and coupling
time on the activity yield of immobilized cellulase. Results showed simulation and prediction accuracy
of ANN was apparently higher compared to RSM. The maximum activity yield obtained from RSM was
57.56% at pH 5.54, carbodiimide concentration 0.32%, and coupling time 3.03 h, where the experimental
value was 60.87 ± 4.79%. Using ANN as fitness function, a maximum activity yield of 69.83% was searched
by genetic algorithm at pH 5.07, carbodiimide concentration 0.36%, and coupling time 4.10 h, where the
experimental value was 66.75 ± 5.21%. ANN gave a 9.7% increase of activity yield over RSM. After reusing
immobilized cellulase for 5 cycles, the remaining productivity was over 50%.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Cellulase has large potential value in many industries, such as
bioenergy, food, animal feed, textile, paper and pulping (Bhat,
2000; Himmel et al., 1999; Li et al., 2009; Percival Zhang et al.,
2006). However, its application has been restricted because of
expensive production (Himmel et al., 1999). In order to improve
the economy of cellulase utilization, the immobilization technol-
ogy has been studied extensively (Filos et al., 2006; Li et al.,
2007; Liao et al., 2008; Wu et al., 2005). Cellulase that has been
immobilized on soluble carriers is capable of hydrolyzing insoluble
cellulosic substrates, but recovery of the enzyme is still difficult
and stability has not been improved evidently via the modification.
When immobilized on insoluble carriers, limited hydrolysis of cel-
lulosic substrates by such immobilized cellulase is inevitable as a
result of poor contact (Woodward, 1989). Use of smart or stim-
uli-responsive polymers as carriers has been suggested as a good
solution to these problems (Galaev and Mattiasson, 2002; Roy
et al., 2004). As one of the smart polymers, Eudragit L-100 (a
copolymer of metacetic acidrylic acid and methyl metacetic acidry-
late) has always been used to immobilize enzymes by covalent
(Cong et al., 1995; Smith et al., 2008; Taniguchi et al., 1989) or non-
covalent methods (Gaur et al., 2005; Rajoka et al., 2007; Roy et al.,
2003; Sardar et al., 2000).
ll rights reserved.

: +86 20 87057737.
Because Eudragit L-100 could not adsorb cellulase strongly and
the adsorption may be affected negatively by the presence of
xylanase (Roy and Gupta, 2006; Sardar et al., 2000), covalent cou-
pling of cellulase to the polymer is required to obtain excellent per-
formance of immobilized cellulase. In our preliminary research, the
covalent immobilization (carbodiimide coupling) provided a
Eudragit-cellulase bioconjugate with good operational stability
but low activity yield (less than 30%) at pH 5.0, EDC 0.6%, and time
6 h as described by others (Dourado et al., 2002; Taniguchi et al.,
1989). It may be caused by either excess or lacking coupling be-
tween enzyme and Eudragit. Excess coupling could affect the struc-
ture of cellulase active center, and lacking coupling could decrease
the loading of cellulase on Eudragit. Therefore, the coupling proto-
col needed to be optimized to improve the activity yield of immo-
bilized cellulase.

The conventional one-factor-at-a-time approach of optimiza-
tion process is not only laborious but also ignores the combined
interaction of each factor. In contrast, artificial neural network
(ANN) could identify arbitrary discriminant functions directly from
experimental data (Almeida, 2002). Moreover, it is a superior and
more accurate modelling technique than response surface method-
ology (RSM) as ANN represents the non-linearity in a much better
way (Desai et al., 2008; Singh et al., 2008; Tompos et al., 2007). As
the most popular artificial learning tool in biotechnology, ANN has
been applied in constructing models of many complicated biopro-
cesses such as functional analysis of genomic/proteomic se-
quences, microbial metabolism, and enzymatic reaction (Almeida,
2002; Pal et al., 2009; Szaleniec et al., 2006; Tompos et al., 2007;
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Table 2
CCD matrix of three factors and the experimental, RSM and ANN determined values of
activity yield. Trails 1 to 14 and 15 to 20 are the experimental runs at the axial and
center points, respectively.

Trial X1 X2 X3 Activity yield (%)

Experimental RSM ANN

1 �1.00 �1.00 �1.00 54.35 ± 3.09 45.53 54.36
2 +1.00 �1.00 �1.00 39.71 ± 2.71 40.23 38.99
3 �1.00 +1.00 �1.00 40.97 ± 3.73 36.87 39.25
4 +1.00 +1.00 �1.00 39.29 ± 2.38 34.79 38.28
5 �1.00 �1.00 +1.00 52.81 ± 3.06 50.94 52.95
6 +1.00 �1.00 +1.00 34.99 ± 2.14 32.72 34.94
7 �1.00 +1.00 +1.00 43.54 ± 3.23 36.65 42.8
8 +1.00 +1.00 +1.00 19.20 ± 1.08 21.65 19.94
9 �1.68 0.00 0.00 37.44 ± 2.97 47.28 38.59
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Wang and Wan, 2009; Zhang et al., 2009). The modelled ANN could
be considered as the fitness function for optimization by genetic
algorithm (GA). GA uses evolutionary natural selection processes,
where selection results in species that fit the best. Recently, ANN
(combined with GA) has gradually become a more and more pop-
ular approach to solve optimization problems in many bioprocess-
es without theoretical or mechanistic dependence (Serra et al.,
2003; Singh et al., 2008; Wang and Wan, 2009).

In the present investigation, a novel coupling conditions optimi-
zation technique based on ANN (as compared with RSM usually
used) was developed to improve the activity yield of immobilized
cellulase.

2. Methods

2.1. Materials

Eudragit L-100 was obtained from Degussa Ltd. (Shenzhen, Chi-
na). The polymer is completely soluble above pH 4.3 in water solu-
tion, and the critical soluble pH changed to 5.0 via coupling
cellulase (Taniguchi et al., 1989).

1-Ethyl-3-(3-dimethyllaminopropyl) carbodiimide (EDC) that
was used as coupling agent, was purchased from Sigma–Aldrich
(Shanghai, China). Filter paper was provided by Whatman Ltd.
(Guangzhou, China). Crude cellulase powder (74.07 FPU/g) was
provided by Shanghai Bio Life Science and Technology Co., Ltd. of
China. FPU is the activity unit of cellulase when filter paper is
used as substrate. All other reagents were of the highest purity
available.

2.2. Enzyme assay

Cellulase activity (FPU) was measured by the Commission on
Biotechnology of the International Union of Pure and Applied
Chemistry (IUPAC) (Ghose, 1987). For the assay procedures de-
scribed here, 2.0 mg of reducing sugars (glucose equivalents) were
produced from filter paper (1 � 6 cm, about 50 mg) at some diluted
enzyme solution.

2.3. Immobilization of cellulase on Eudragit L-100

One gram of Eudragit L-100 was dissolved in a 40 ml of distilled
water in a flask and then pH of the solution was brought to 11 with
drop wise addition of 3 M NaOH. After the polymer dissolved com-
pletely, the pH value of the solution was decreased to 4.32–7.68 by
adding 1 mol/l HCl and the total volume was made up to 50 ml
with distilled water. To the polymer solution, carbodiimide
(0.06–0.74%, w/v) was added to activate the polymer for 15 min,
and then crude cellulase powder containing 100 mg protein was
added and kept under stirring for 0.48–5.52 h at room tempera-
ture. After the desired time, the pH value of the mixture was re-
duced to 3.6 with 3 mol/l acetic acid. Precipitations were
separated by centrifugation (10,000rpm, 10 min) at 4.0 �C. In order
to remove the adsorbed cellulase, the obtained precipitations were
washed three times with 0.02 mol/l acetic acid (containing 1 mol/l
NaCl and CaCl2) and used as immobilized cellulase. Dissolve immo-
Table 1
Experimental range and levels of each factor.

Factors Symbol Range and levels

�1.68 �1.00 0.00 1.00 1.68

pH X1 4.32 5.00 6.00 7.00 7.68
EDC concentration (%) X2 0.08 0.16 0.28 0.40 0.48
Coupling time (h) X3 0.48 1.5 3.0 4.5 5.52
bilized cellulase with 0.2 mol/l acetate buffer (pH 5.0) to some di-
luted solution and assay its activity as the description of Section
2.2. Activity yield, which was taken as the response of the designed
experiments, was calculated as follow:

activity yield ð%Þ ¼ activity of immobilized cellulase
activity of free cellulase

� 100 ð1Þ
2.4. Central composite design

Activity yield is determined by the coupling between Eudragit
and cellulase. Besides carbodiimide concentration (coupling agent)
and coupling time, pH that is important for stability and life of car-
bodiimide in water solution, could also affect the coupling reac-
tion. The range and levels of the three factors investigated in this
study were given in Table 1, and were also chosen to encompass
the range in the literature (Silva et al., 2006; Smith et al., 2008).
A composite design (CCD) with 20 trials was generated by Minitab
statistical software. The central composite design consisted of a 23

full factorial design at a distance 1.68179 from the origin and 6
central points (Table 2). Using RSM and ANN models, the combined
effect of the three factors was evaluated according to the experi-
mental results of the CCD.

2.5. Response surface methodology

The relationship amongst the three factors was expressed in a
second-order equation:

Y ¼ a0 þ
X3

i¼1

aiXi þ
X3

i¼1

X3

j¼1

aijXiXj ð2Þ

where, Y is the predicted activity yield, a0 is constant, ai and aij are
the regression coefficients of RSM model, Xi and Xj is the factor var-
iable. Statistical analysis of the data from CCD was performed to
evaluate the analysis of variance (ANOVA) using Minitab statistical
software.

2.6. Artificial neural network

In our experiment, the ANN architecture consists of three neu-
rons (pH, carbodiimide concentration, and coupling time) in the in-
10 +1.68 0.00 0.00 31.04 ± 2.65 30.23 30.84
11 0.00 �1.68 0.00 40.44 ± 4.03 44.67 40.88
12 0.00 +1.68 0.00 23.33 ± 1.84 27.91 24.2
13 0.00 0.00 �1.68 36.23 ± 3.19 43.22 39.65
14 0.00 0.00 +1.68 34.69 ± 2.71 36.73 34.59
15 0.00 0.00 0.00 55.65 ± 4.74 55.42 55.75
16 0.00 0.00 0.00 55.65 ± 4.74 55.42 55.75
17 0.00 0.00 0.00 55.65 ± 4.74 55.42 55.75
18 0.00 0.00 0.00 55.65 ± 4.74 55.42 55.75
19 0.00 0.00 0.00 55.65 ± 4.74 55.42 55.75
20 0.00 0.00 0.00 55.65 ± 4.74 55.42 55.75
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Fig. 1. Schematic representation of ANN modelling the relationship between
activity yield and three factors (pH, carbodiimide concentration, and coupling
time).

Table 3
Model coefficients by multiple nonlinear regressions.

Model term Standard error t-Value p-Value

Intercept 2.471 22.428 0.000
X1 1.640 �3.094 0.011
X2 1.632 �3.022 0.013
X3 1.640 �1.178 0.266

X2
1

1.599 �3.693 0.004

X2
2

1.568 �4.219 0.002

X2
3

1.599 �3.422 0.007

X1X2 2.142 0.376 0.715
X1X3 2.142 �1.508 0.162
X2X3 2.142 �0.657 0.526
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put layer, four neurons in the hidden layer, and one neuron (activ-
ity yield) in the output layer (Fig. 1). All the data (input and output
ones) were scaled as follow:

X� ¼ 2
X � Xmin

Xmax � Xmin
� 1

Y� ¼ Y � 0
100� 0

ð3Þ

where, X* and Y* are the new scaled data of input and output lay-
ers. The new scaled data were fed to train an ANN model using
back-propagation algorithm. The tangent sigmoid and pure linear
functions were used as the transfer functions in the hidden and
output layers of the ANN, respectively. The mean square error be-
tween the results of the output neurons and the actual outputs is
calculated and propagated backward through the network. Then
the algorithm adjusts the weight of each. Once the mean square er-
ror got to 1e�4, the training was over and the corresponding ANN
was built.

2.7. Enzymatic hydrolysis insoluble celluloses by immobilized cellulase

To check the reusability of immobilized cellulase, repeated
hydrolysis reaction was carried out. 5 FPU of immobilized cellulase
was incubated with 0.5 g microcrystal cellulose at 50 �C and pH 5.0
with constant shaking at 120 rpm. The total reaction volume was
25 ml. After 60 min, undegraded substrate was separated by
centrifugation at 10,000 rpm for 5 min. For recovering enzyme,
the pH of the obtained supernatant was reduced to 3.6 with 2 M
acetic acid, followed by centrifugation at 8000 rpm for 10 min.
The recovered precipitation (immobilized cellulase) was washed
three times with 0.02 M acetic acid and used for the next hydro-
lytic reaction at the same conditions. After recovering immobilized
cellulase, DNS method was used to estimate the amount of reduc-
ing sugars produced (Ghose, 1987).

Rice straw was also hydrolyzed as describe above but pre-
treated in advance. 10 g rice straw was boiled with 300 ml NaOH
solution (w/v, 2%) for 60 min at normal pressure.

3. Results and discussion

3.1. Response surface methodology

RSM is a frequently used technique for building models and
determining the optimal process conditions. Based on the experi-
mental results of CCD in Table 2, a quadratic polynomial was estab-
lished to identify the relationship between activity yield and three
immobilization conditions. The resulting RSM model equation is
following:
Y ¼ �196:069þ 70:6313X1 þ 97:6285X2 þ 28:1013X3

� 5:90640X2
1 � 165:447X2

2 � 2:43215X2
3 þ 4:02500X1X2

� 2:15333X1X3 � 4:69167X2X3 ð4Þ

where, Y = response value (activity yield), X1 = pH, X2 = carbodiim-
ide concentration, X3 = coupling time.

According t and p-values shown in Table 3, the significance of
the three factors could be considered as: coupling time > carbodi-
imide concentration > pH. The larger the t-value and the smaller
the p-value is, the higher is the significance of corresponding coef-
ficient. Based on Eq. (4), the 3D response surface diagrams are pre-
sented in Fig. 2. From the 3D diagrams, it is easy and convenient to
understand the interactions between two factors and activity yield
and also locate their optimum levels. The obtained surfaces were
convex and symmetric suggesting that there were well defined
optimum operating conditions. However, the convexity was so
low that the maximum activity yield of immobilized cellulase
may not be predicted accurately enough because flat surfaces
mean that activity yield may not vary a lot when three factors vary
near the optimum points. Fig. 2 also reveals that pH do not show
more significant effect on activity yield of immobilized cellulase
compared to carbodiimide concentration and coupling time. The
predicted maximum of activity yield by the RSM was 57.56%,
where X1 = 5.54, X2 = 0.32%, X2 = 3.03 h. Under the optimized con-
ditions, the activity yield obtained experimentally was
60.87 ± 4.79%, which was in accordance with the predicted RSM
model.

3.2. Artificial neural network

Using the experimental results in Table 2, ANN was also applied
to model the relationship between activity yield and three immo-
bilization conditions. The weight and threshold values of each
layer, which determined the structure of the trained ANN, were
as follow:

net:iwf1g ¼

0:8901 2:1935 2:0877
�1:7721 2:1255 �1:6178
�0:2896 2:4506 �2:4003
3:7043 0:8348 �0:5728

0
BBB@

1
CCCA

net:lwf2g ¼ ð�0:1899 0:2146 � 0:1930 0:3537Þ

net:bf1g ¼ ð�2:3781 1:2227 � 0:0382 4:3496ÞT

net:bf2g ¼ ð�0:1705ÞT
3.3. Comparison of RSM and ANN

After RSM and ANN models were built, the experimentally
determined and calculated activity yields with the two models
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(c) Fixed level: pH = 5.54 
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Fig. 2. Three-dimensional response surfaces of activity yield showing the interactions among pH, carbodiimide concentration, and coupling time.
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were compared. As seen in Table 2, the experimentally determined
and ANN simulated values were almost identical as compared to
the simulated values by RSM model. Besides simulation, another
three experiments were carried out to examine the predictive per-
formance of the two models (Table 4). Data in Table 4 showed the
predicted values by ANN model were much closer to experimen-
tally measured ones. Both simulation and prediction results
showed the training of an ANN model was quite successful. The
ANN was much more appropriately to be considered as the univer-
sal algebraic function between activity yield and the three factors.
Similar results were obtained for researchers to study other bio-
processes including enzyme production and enzymatic reaction
(Manohar and Divakar, 2005; Singh et al., 2008; Zhang et al., 2009).

3.4. Genetic algorithm

Using the trained ANN as the fitness function, GA was imple-
mented to optimize the immobilization conditions for maximum
Table 4
Comparison of experimentally determined, RSM and ANN predicted values of activity
yield.

No. X1 X2 X3 Activity yield (%)

Experimental RSM ANN

1 �1.68 0.00 1.00 50.37 ± 4.31 45.26 48.43
2 �1.00 1.00 0.00 37.78 ± 2.81 42.19 39.21
3 0.00 1.68 1.68 18.25 ± 2.01 5.13 20.07
activity yield as follows. Randomly generate a population of indi-
viduals and assign a fitness value to each individual by specific fit-
ness function. Select individuals with higher fitness values and
make them undergo genetic operation such as crossover and muta-
tion. Use the newly generated child population as the parent pop-
ulation for the next generation and treat them with the same
evolutional process continuously until a stop criterion has been
satisfied (He et al., 2008; Izadifar and Jahromi, 2007).

Fig. 3 shows the evolution of the algorithm with successive gen-
erations. Starting from 37.91%, the average activity yield appar-
ently increased until about the 30th generation and was 68.41%
at the end of 100 generations. The maximum activity yield also
had increased quickly for the first 18 generations and got to
69.83% at the 56th generation, then kept invariance. So the maxi-
mum activity yield obtained from ANN could be considered as
69.83% that was apparently higher than 57.56% maximized by
RSM. The optimum immobilization conditions based on ANN were
pH 5.07, carbodiimide concentration 0.36%, and coupling time
4.10 h, where the experimental activity yield was 66.75 ± 5.21%.
This showed a perfect agreement with ANN. Compared to the
maximum value based on optimum conditions of RSM, there was
a 9.7% increase of activity yield.
3.5. Reusability of immobilized cellulase

Fig. 4 shows the practical application of immobilized cellulase
in hydrolysis of insoluble cellulosic substrates. As can be observed,
the retained productivity was above 50% after 5 cycles for hydroly-
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Fig. 4. Reusability of immobilized cellulase for hydrolysis of two insoluble
celluloses.

Y. Zhang et al. / Bioresource Technology 101 (2010) 3153–3158 3157
sis of the two insoluble celluloses. It points out that the immobi-
lized cellulase could be mostly recovered during these cycles. The
prepared Eudragit-cellulase showed high performance for repeated
hydrolysis of insoluble celluloses. Factors causing the loss of the
reducing sugars include, but not limited to fall of enzyme from
Eudragit due to some weak linkage existence, unavoidable enzyme
deactivation during separation and reaction process, and enzyme
loss due to adsorption between enzyme and separated substrate.
4. Conclusions

Like the standard RSM, the outputs of ANN can be varied with
different data inputs, so ANN also can be employed for modelling
and optimization of different bioprocess systems. In this paper,
the experimental results showed the simulation and prediction of
ANN were superior to that of RSM, and ANN based optimization
brought a 9.7% increase of maximum activity yield compared to
RSM. It is believed that ANN based optimization technique would
gain greater popularity for modelling and optimization of more
bioprocess systems due to its mechanistic dependence and high
simulation/prediction accuracy shown in learning these systems.
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