## 双回路逆流干式蒸发器设计及实验验证\*

中国科学院广州能源研究所 中科院可再生能源重点实验室 广东省新能源和可再生能源研究开发和应用重点实验室 尹应德\* 孙晋飞 朱冬生 TCL 空调器 (中山 )有限公司 刘 峰 王 洪

摘要 基于非对称空间传热理念,设计了一种新型双回路逆流干式蒸发器,并将其安装在空气源热泵机组上进行实验测试。理论计算和测试结果表明:制冷工况下,干式蒸发器总表面传热系数的理论计算值为 $1709.4~W/(m^2 \cdot K)$ ,实测值为 $1938.1~W/(m^2 \cdot K)$ ,后者比前者大11.8%;制热工况下,干式蒸发器总表面传热系数的理论计算值为 $1834.9~W/(m^2 \cdot K)$ ,实测值为 $2226.4~W/(m^2 \cdot K)$ ,后者比前者大17.5%。对误差原因进行了分析,结果显示:实际测试时壳程流速增大;蒸发器内换热管的污垢热阻很小。

关键词 双回路 逆流 自支撑 干式蒸发器 总表面传热系数

# Design and experimental verification for double-loop countercurrent dry-expansion evaporators

By Yin Yingde \*, Sun Jinfei, Zhu Dongsheng, Liu Feng and Wang Hong

Abstract Based on the asymmetric space heat transfer concept, designs a novel double-loop counter-currrent dry-expansion evaporator equipment, and installs it to an air-source heat pump unit and performs the experiment. Theoretical calculation and test results show that the calculated value of the overall surface coefficient of heat transfer is 1 709. 4 W/( $\rm m^2 \cdot \rm K$ ), and the measured value is 1 938. 1 W/( $\rm m^2 \cdot \rm K$ ) for dry-expansion evaporator under cooling condition, the latter is 11.8% higher than the former; and that the corresponding values under heating condition are 1 834.9 W/( $\rm m^2 \cdot \rm K$ ) and 2 226.4 W/( $\rm m^2 \cdot \rm K$ ) respectively, the latter is 17.5% higher than the former. Analyses the error cause and concludes that the flow velocity in shell-side of the measured evaporator is increased, and the fouling resistance of heat exchanger tube in the measured evaporator is nearly zero.

Keywords double-loop, countercurrent, self-supporting, dry-expansion evaporator, overall surface coefficient of heat transfer

★ Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou, China

#### 0 引言

蒸发器是制冷/热泵装置中的重要换热设备,根据被冷却介质种类的不同,蒸发器可分为冷却液体载冷剂的水(液)冷蒸发器和风冷蒸发器。根据供液方式的不同,可分为干式、满液式和降膜式蒸发器等。干式蒸发器应用较早,其理论研究和设计技术比较成熟;降膜式蒸发器作为一种新型的蒸发器,尽管具有一定的技术优势,但其产品相对不成熟,仍处于研发阶段[1-2]。满液式、降膜式蒸发器主要用于大型制冷机组,其优点是制冷效果好,缺点

是回油困难、制冷剂充注量大。干式蒸发器主要用于中、小型制冷/热泵机组,其优点是调节性能好、回油容易、制冷剂充注量小,缺点是换热性能较差、流阻大<sup>[3]</sup>。从理论上讲,干式蒸发器的传热性能比满液式蒸发器好<sup>[4]</sup>,但在实际应用中,传统干式蒸发器的制冷效果比满液式蒸发器差<sup>[5]</sup>,这说明干式蒸发器高效传热的潜力在实际应用中没有发挥出来。

<sup>\*</sup> 广州市科技计划项目(编号:201604016048),中国南方智谷 引进创新团队(编号:顺府办函「2014」365号)

<sup>☆</sup> 尹应德,男,1978年10月生,工学博士,工程师 510640 广州市天河区五山能源路2号大院生物质能源大楼

<sup>(020) 37029707</sup> 

E-mail:yinyingde@163.com 收稿日期:2016-04-18

修回日期:2016-05-11

由于干式蒸发器仍有着广泛的应用,为了改善传统干式蒸发器的换热性能,降低其流动阻力,提高其综合性能,近年来,干式蒸发器的研究重点为:利用各种高效传热管,提高其传热效率;优化管程和壳程,改变对流换热方式;采用自支撑型强化换热管,降低壳程流动阻力;控制污垢热阻等方面。尽可能提高干式蒸发器的换热能力,减小尺寸,降低流动阻力,达到节能、节材和减少制冷剂充注量的目的。

传统的干式蒸发器主要为折流板壳管式换热 器,其主要缺点为:管外的折流板导致壳程的流动 阻力增大,管外水流和管内的制冷剂之间为叉流, 较之逆流,其传热温差小,传热效果相对较差[6]。 另外一种较为常见的是折流杆式换热器,与折流板 壳管式换热器相比,主要是对支撑结构进行了改 进,改变了流体的流动形态,从而强化了壳程换热 和减小了阻力损失[7]。新型自支撑型干式换热器 的换热管束靠管道本身的凹凸点相互接触,起到自 支撑作用,不需要折流板,壳程阻力比传统的折流 板换热器小。与常规干式蒸发器相比,具有传热效 率高、壳程压降小、抗垢性能好、占地面积小等优 点。本文将在总结前人研究的基础上,考虑节能、 节材和减少制冷剂充注量的要求,为模块空气源热 泵设计1种双回路逆流自支撑型干式蒸发器,并对 其总表面传热系数进行实验验证。

#### 1 干式蒸发器的设计

#### 1.1 设计参数

模块空气源热泵中的干式蒸发器,管程的制冷剂为 R22,壳程的载冷剂为水,其主要参数如表 1 所示。

表 1 干式蒸发器主要设计参数

| 制冷量 $Q_{\rm e}/$ 制热量 $Q_{\rm c}/{ m kW}$ | 50/65 |
|------------------------------------------|-------|
| 制冷剂                                      | R22   |
| 蒸发温度 t <sub>e</sub> /℃                   | 2     |
| 冷凝温度 tc/℃                                | 50    |
| 冷水进/出口温度/℃                               | 12/7  |
| 热水进/出口温度/℃                               | 40/45 |

#### 1.2 设计要求

由于对应型号的模块空气源热泵搭载 2 台涡旋式压缩机,采用双风机风冷冷凝器,而干式蒸发器要求整体设计,因此,干式蒸发器需设计成制冷剂侧双回路、水侧单回路。管程制冷剂侧有 2 个回路共 4 个进出口,管箱中的隔板将两路制冷剂分隔开,壳程的载冷剂(水)为一路,进、出口各一个。如

图 1 所示,制冷剂与载冷剂纯逆流设计,以达到最大传热温差的效果;此外,为了提高蒸发器的传热性能,根据制冷剂在管内蒸发沸腾和冷凝的特性,基于非对称空间传热理念,上下管程换热管设计成不等传热面积,以适应制冷剂为液、气态时的传热性能差异;上下壳程设计成流体空间体积相等,以保证上下壳程载冷剂的流速相同,使干式蒸发器各局部表面传热系数大大提升。

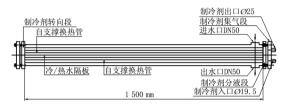



图 1 干式蒸发器纵向示意图

#### 1.3 设计计算

#### 1.3.1 自支撑强化传热管选择

目前,行业内应用较多的自支撑强化传热铜管主要有扭曲管和三叶管等。应用于中、小型换热器内的扭曲管基圆外径多为9.52,12.70,15.88 mm 这几种规格。由文献[8]可知,换热管管径越小,单位体积内布置的换热面积越大,从而相同容积蒸发器内,采用小管径换热管的换热面积增大,提高了单位体积的换热能力。由文献[9]可知,采用强化传热扭曲管的蒸发器,与传统蒸发器相比,其总传热系数提高了15%左右。因此,对于相同换热能力的蒸发器,采用强化传热扭曲管,可减小换热面积,节省管材,并使蒸发器的体积减小,从而,减少制冷剂的充注量。为使结构紧凑,提高换热性能,达到节能、节材和减小制冷剂充注量的要求,本设计选用基圆外径为9.52 mm 的扭曲铜管,其主要参数如表2所示。

表 2 扭曲换热管主要结构尺寸

| 11.0 7.90 40 0.41 | 长轴 A <sub>o</sub> /mm | 短轴 B <sub>o</sub> /mm | 扭矩 S/mm | 壁厚 δ/mm |
|-------------------|-----------------------|-----------------------|---------|---------|
|                   | 11.0                  | 7.90                  | 40      | 0.41    |

#### 1.3.2 传热面积计算

初步假设蒸发器的总表面传热系数 K=1~800 W/( $m^2 \cdot K$ ),换热平均温差  $\Delta t_m$  为

$$\Delta t_{\rm m} = \frac{(t_1 - t_{\rm e}) - (t_2 - t_{\rm e})}{\ln \frac{t_1 - t_{\rm e}}{t_2 - t_{\rm e}}}$$
(1)

式中  $t_1$  和  $t_2$  分别为载冷剂进、出口温度, $^{\circ}$ ;  $t_e$  为蒸发温度, $^{\circ}$ 。

理论传热面积 F 为

$$F = \frac{Q}{K\Delta t_m} \tag{2}$$

式中 Q为换热量,W。

扭曲换热管的长度 L=1500 mm,则该蒸发器的理论总管数 Z 为

$$Z = \frac{F}{\pi d_{\rm el} L} \tag{3}$$

$$d_{eo} = \frac{2A_{o}B_{o}}{1.5(A_{o} + B_{o}) - \sqrt{A_{o}B_{o}}}$$
(4)

式(3),(4)中  $d_{eo}$ 为扭曲管的当量外径,mm。

通常,为了安全起见,在实际设计中,换热器内换热管的数量考虑取10%左右的余量。

#### 1.3.3 管内流程数计算

忽略冷凝器的过冷度,取过热度  $4 \, \mathbb{C}$ ,可查到蒸发器进、出口制冷剂 R22 的比焓,则制冷剂的质量流量 G,为

$$G_{\rm r} = \frac{Q}{h_2 - h_1} \tag{5}$$

式中  $h_1$  和  $h_2$  分别为蒸发器进、出口制冷剂的比焓,kJ/kg。

管内单流程时的制冷剂流通面积 F。为

$$F_{\rm s} = \frac{\pi}{4} (A_{\rm o} - 2\delta) (B_{\rm o} - 2\delta) Z_{\rm a} \tag{6}$$

式中 Za 为实际布置换热管数。

单位面积制冷剂质量流量W<sub>r</sub>为

$$W_{\rm r} = \frac{G_{\rm r}}{\frac{F_{\rm s}}{n}} \tag{7}$$

干式蒸发器管内制冷剂质量流量一般取 200 kg/( $m^2 \cdot s$ )以下,为了改善换热性能,近年来,新型高效传热干式蒸发器管内制冷剂质量流量有提高的趋势。经试算,n=2 时, $W_r=124.73$  kg/( $m^2 \cdot s$ ),低于 200 kg/( $m^2 \cdot s$ ),较为合理。

#### 1.3.4 管束布置

换热器壳体的尺寸由换热管的数量、管间距、布置规则、壳程流体流速等因素决定。图 2 为干式蒸发器的截面示意图,为配合空气源热泵的双压缩机、分制冷剂环路的设计,干式换热器的左右半部各为一个制冷剂回路,管程为二流程;中间用隔板分隔开,壳程也为二流程。根据管子的实际排布需要,上管程排管数为 54 根,下管程为 38 根,实际换热面积为 4.0 m²。

### 1.3.5 传热校核计算

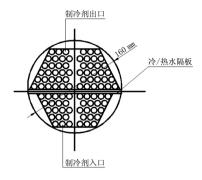



图 2 干式蒸发器横截面示意图

考虑管内外的污垢热阻及管壁的导热热阻,总 表面传热系数计算式为

$$K = \frac{1}{R_{di} + \frac{1}{\alpha_{i}} \frac{d_{eo}}{d_{ei}} + \frac{\delta}{\lambda} \frac{d_{eo}}{d_{m}} + \frac{1}{\alpha_{o}} + R_{do}}$$
(8)

式中  $R_{di}$ 为管内污垢热阻,取  $2.0 \times 10^{-5}$  m² · K/W; $\alpha_i$  为管内表面传热系数,W/(m² · K); $d_{ei}$  为扭曲管当量内径,mm; $\lambda$  为铜管管壁材料导热系数,取 383.8 W/(m · K); $d_{m}$  为  $d_{eo}$  和  $d_{ei}$  的对数平均值,取 9.32 mm; $\alpha_o$  为管外表面传热系数,W/(m² · K); $R_{do}$  为管外污垢热阻,取  $8.6 \times 10^{-5}$  m² · K/W。

制冷剂管内表面蒸发沸腾传热系数计算式<sup>[10]</sup>为

$$\alpha_{\rm ei} = AB \, \frac{q_{\rm i}^{0.4} W_{\rm r}^{0.4}}{d_{\rm ei}^{0.6}} \tag{9}$$

式中 A 为物性系数,取 0.487;B 为修正系数,取 1.5; $q_i$  为热流密度, $W/m^2$ 。

制冷剂管内表面冷凝传热系数计算式[10]为

$$\alpha'_{i} = 0.455C \left(\frac{\beta}{q_{i}d_{ei}}\right)^{\frac{1}{3}}$$
 (10)

式中  $\beta$  为物性系数,计算结果为5.44×10<sup>12</sup> W<sup>3</sup> • N/(m<sup>6</sup> • K<sup>3</sup> • s); C 为修正系数, C=2.0。

管外表面载冷剂传热系数计算式[11]为

$$\alpha_{\rm o} = D \frac{N u_{\rm o} \lambda_{\rm o}}{d_{\rm eo}} \tag{11}$$

式中 D 为修正系数,D=1.35;Nu。为努塞尔数; $\lambda$ 。为导热系数, $W/(m \cdot K)$ 。

#### 1.3.6 计算数据

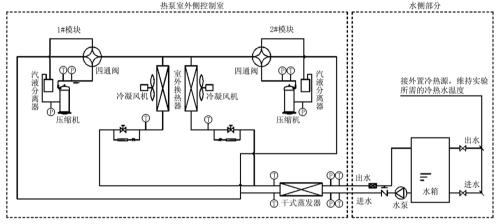
干式蒸发器各参数计算结果如表 3 所示。

制冷和制热时,干式蒸发器管内外流体各参数计算结果如表 4 所示。

#### 2 实验验证

#### 2.1 实验装置

表 3 干式蒸发器各参数计算结果


| 理论传热面积 F/m²                 | 3.85 |
|-----------------------------|------|
| 椭圆管当量外径 $d_{ m eo}/{ m mm}$ | 9.13 |
| 椭圆管当量内径 $d_{ m ei}/{ m mm}$ | 8.71 |
| 理论总管数 $Z$                   | 89   |
| 实际总管数 $Z_a$                 | 98   |
| 实际传热面积 $F_a/m^2$            | 4.24 |

为了测试双回路纯逆流自支撑型干式蒸发器的综合总表面传热系数,将该型干式蒸发器安装在模块式空气源热泵上,并利用焓差实验室进行相关的实验测试。

图 3 为干式蒸发器实验测试示意图,带新型干

表 4 干式蒸发器管内外流体各参数计算结果

|                                       | 制冷工况    | 制热工况     |
|---------------------------------------|---------|----------|
| 换热平均温差 Δt <sub>m</sub> /℃             | 7.21    | 7.21     |
| 制冷剂的质量流量 $G_{\rm r}/({ m kg/s})$      | 0.343   | 0.343    |
| 管内单流程时的流通面积 $F_{ m s}/{ m m}^2$       | 0.005 5 | 0.005 5  |
| 单位面积制冷剂质量流速 W <sub>r</sub> /(kg/      | 124.73  | 124.73   |
| $(m^2 \cdot s))$                      |         |          |
| 热流密度 $q_{ m i}/({ m W/m^2})$          | 11 792  | 15 330   |
| 管内表面传热系数 α <sub>i</sub> /(W/(m² • K)) | 3 689.8 | 3 130.4  |
| 管外流体雷诺数 Re。                           | 6 155   | 17 047   |
| 普朗特数 Pr。                              | 9.73    | 4.16     |
| 努塞尔数 Nu。                              | 51.22   | 96.97    |
| 管外表面传热系数 α <sub>ο</sub> /(W/(m²・K))   | 4 821.9 | 10 164.5 |
| 总表面传热系数 K/(W/(m²・K))                  | 1 709.4 | 1 834.9  |



①温度变送器 ②压力变送器 ❷流量计 內热力膨胀阀 ━单向阀 ←制热辅助毛细管 ⋈截止阀 □止回阀

图 3 干式蒸发器实验测试示意图

式蒸发器的空气源热泵由 2 个模块组成,压缩机采用涡旋压缩机,冷凝器为风冷冷凝器,蒸发器为笔者研发的新型高效干式蒸发器,节流装置采用热力膨胀阀,制冷剂为 R22。整个空气源热泵安装于焓差实验室的室外侧控制室内,空气源热泵冷水/热水由水侧部分的系统来控制,以满足实验测试要求。通过四通阀,可实现制冷/制热工况的转换。

通过调节干式蒸发器的载冷剂流量和温度来控制制冷剂的蒸发温度。利用计算机和自动采集系统对实验数据进行采集和实时监控。实验中使用的测试仪器主要参数如表 5 所示。

表 5 主要测试仪器

| •         |         |                     |       |
|-----------|---------|---------------------|-------|
|           | 型号      | 量程                  | 精度    |
| 铂热电阻      | Pt100   | 0∼300 ℃             | A 级   |
| 湿度传感器     | EE20    | $0 \sim 100 \%$     |       |
| 涡轮流量传感器   | LWGY-40 | $2\!\sim\!15~m^3/h$ | 1%    |
| 压力变送器     | KYB600  | $0\sim 4$ MPa       | 0.25% |
| 三相四线有功电度表 | DT862-4 | 0∼50 A              | 2 %   |

#### 2.2 实验数据处理

### 2.2.1 制冷量

空气源热泵在制冷工况时,其制冷量的测试可 采用液体载冷剂法。空气源热泵的制冷量 Q。等于 蒸发器的换热量,其计算式为

$$Q_{e} = mc_{b}\Delta t = \rho Vc_{b}(t_{1} - t_{2})$$
 (12)

式中 m 为冷水质量流量,kg/s; $c_p$  为冷水比定压 热容, $kJ/(kg \cdot \mathbb{C})$ ; $\Delta t$  为算术平均温差, $\mathbb{C}$ ; $\rho$  为冷水密度, $kg/m^3$ ;V 为冷水体积流量, $m^3/s$ ; $t_1$  为冷水进口温度, $\mathbb{C}$  。

#### 2.2.2 制热量

空气源热泵在制热工况时,其制热量的测试同样可采用液体载冷剂法,计算方法同 2.2.1 节。

#### 2.2.3 总表面传热系数的计算

总表面传热系数可由式(2)计算得到。

#### 2.3 实验测试结果

实验测试工况分为制冷工况和制热工况,空气源热泵的制冷和制热工况通过焓差实验室来调节和控制。制冷时的测试工况为干球温度 34.99  $^{\circ}$ 、湿球温度 23.99  $^{\circ}$ 、制热时的测试工况为干球温度

7.06 ℃,湿球温度 5.98 ℃,实验测试结果如表 6,7 所示。

表 6 制冷工况测试结果

|             |       | 时间/min |       |       |       |       |       | 平均值   |
|-------------|-------|--------|-------|-------|-------|-------|-------|-------|
|             | 5     | 10     | 15    | 20    | 25    | 30    | 35    |       |
| 进口水温/℃      | 11.19 | 11.17  | 11.17 | 11.13 | 11.09 | 11.05 | 11.01 | 11.12 |
| 出口水温/℃      | 7.15  | 7.14   | 7.13  | 7.10  | 7.06  | 7.04  | 7.00  | 7.09  |
| 进出水温差/℃     | 4.04  | 4.03   | 4.04  | 4.03  | 4.03  | 4.01  | 4.01  | 4.03  |
| 冷水流量/(m³/h) | 11.16 | 11.17  | 11.17 | 11.17 | 11.16 | 11.16 | 11.16 | 11.16 |
| 制冷量/kW      | 52.44 | 52.39  | 52.48 | 52.39 | 52.30 | 52.19 | 52.13 | 52.33 |

| 表 | 7 | 生山 | 执 | $\mathbf{T}$ | 湿 | 301 | 试 | 生 | 里 |
|---|---|----|---|--------------|---|-----|---|---|---|
|   |   |    |   |              |   |     |   |   |   |

|              | 时间/min |       |       |       |       |       | 平均值   |       |
|--------------|--------|-------|-------|-------|-------|-------|-------|-------|
|              | 5      | 10    | 15    | 20    | 25    | 30    | 35    |       |
| 进口水温/℃       | 40.28  | 40.14 | 40.24 | 40.21 | 40.26 | 40.28 | 40.32 | 40.25 |
| 出口水温/℃       | 45.02  | 44.90 | 44.97 | 44.97 | 45.00 | 45.02 | 45.07 | 44.99 |
| 进出水温差/℃      | 4.74   | 4.76  | 4.73  | 4.76  | 4.74  | 4.74  | 4.75  | 4.75  |
| 制热水流量/(m3/h) | 11.46  | 11.47 | 11.47 | 11.46 | 11.46 | 11.47 | 11.46 | 11.46 |
| 制热量/kW       | 63.32  | 63.49 | 63.15 | 63.50 | 63.12 | 63.28 | 63.39 | 63.32 |

#### 2.4 结果分析

制冷工况下实测得到的总表面传热系数为 1 938.1 W/(m<sup>2</sup> • K),对应的理论计算结果为 1 709.4 W/(m² · K), 比理论计算结果大 11.8%; 制热工况下实际测试得到的总表面传热系数为 2 226.4 W/(m<sup>2</sup> · K),对应的理论计算结果为 1834.9 W/(m²·K),比理论计算结果大 17.5%。

分析原因可知:实际测试时壳程流速增大,因 此,壳程的对流换热表面传热系数增大。根据实际 经验,在保持壳程流动阻力在合理范围的情况下, 尽量提高流速,以增大干式蒸发器的总表面传热系 数,有利于制冷机组/热泵整体性能的提升。此外, 由于干式蒸发器是全新的,蒸发器内换热管内外的 污垢尚未形成,其污垢热阻几乎为零。而理论计算 考虑了干式蒸发器污垢对换热性能的影响,因此, 理论计算值比实际测试值小是合理的。随着运行 时间的推移,理论计算值将与实际值逐渐接近。若 系统长期运行不清洗,则最终的实际值可能比理论 计算值还小。

#### 3 结论

1) 干式蒸发器在制冷工况下理论计算的总表 面传热系数为 1 709.4 W/(m² • K),实际测试的 总表面传热系数为 1 938.1 W/(m² · K),比理论 值提高了11.8%;在制热工况下理论计算的总表 面传热系数为 1 834.9  $W/(m^2 \cdot K)$ ,实际测试的 总表面传热系数为 2 226.4 W/(m² • K),比理论 值提高了17.5%;在合理的误差范围内,本文设计 的双回路逆流自支撑型干式蒸发器是可行的。

2) 由于总表面传热系数的理论计算值考虑了

管内外污垢热阻,而实际测试时,全新的干式蒸发 器的污垢尚未形成,其污垢热阻很小,因此,理论计 算值比实际测试值小是合理的。

3) 由于采用强化传热扭曲管作为换热管,较之 传统的蒸发器,笔者研制设计的双回路逆流自支撑 型干式蒸发器采用强化传热扭曲管,符合干式蒸发 器具有节能、节材和减少制冷剂充注量的发展方向。 参考文献:

- [1] 张猛,周帼彦,朱冬生.降膜蒸发器的研究进展[J].流 体机械,2012,40(6):82-86
- [2] 王学会,袁晓蓉,吴美高,等.制冷用水平降膜式蒸发 器研究进展[J]. 制冷学报,2014,35(2):19-29
- [3] 刘斌. 干式管壳蒸发器的应用和优化设计[J]. 制冷与 空调,2007,7(2):40-42
- [4] 陈沛霖,岳孝方. 空调与制冷技术手册[M]. 上海:同 济大学出版社,1989:795-800
- [5] 潘丽君.满液式蒸发器与干式蒸发器的区别[J].制 冷,2011,30(3):80-83
- [6] PENG B, WANG Q W, ZHANG C, et al. An experimental study of shell-and-tube heat exchangers with continuous helical baffles [J]. ASME J Heat Transf, 2007, 129 (10): 1425-1431
- [7] 王英双. 纵流管壳式换热器流动与传热性能的理论与 实验研究[D]. 武汉:华中科技大学,2011: 2-12
- [8] 司少娟,陈亚标,程跃,等.双回路紧凑型干式蒸发器 的设计[J]. 低温与超导,2009,37(10):32-35
- [9] 朱冬生,周吉成,霍正齐,等.满液式蒸发器中螺旋扁 管的池沸腾传热[J]. 化工学报,2013,64(4): 1151-1156
- [10] 彦启森,石文星,田长青. 空气调节用制冷技术[M]. 北京:中国建筑工业出版社,2009:89-93,109-110
- [11] 余建祖. 换热器原理与设计[M]. 北京:北京航空航 天大学出版社,2006:131-198