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a b s t r a c t

The boundary element method (BEM) has been widely applied in the field of wave interaction with

offshore structures, but it is still not easy to use in resolving large-scale problems because of computing

costs and computer storage being increased by O(N2) for the traditional BEM. In this paper a

precorrected Fast Fourier Transform (pFFT) higher-order boundary element method (HOBEM) is

proposed for reducing the computational time and computer memory by O(N). By using a free-surface

Green function for infinite water-depth, the disadvantage of the Fast Multipole Boundary Element

Method (FMBEM)—i.e. unable to solve infinite deep-water wave problems—can be overcome.

Numerical results from the problems of wave interaction with single- and multi-bodies show that

the present method evidently has more advantages in saving memory and computing time, especially

for large-scale problems, than the traditional HOBEM. In addition, the optimal variable of pFFT mesh is

recommended to minimize time cost.

Crown Copyright & 2011 Published by Elsevier Ltd. All rights reserved.
1. Introduction

In analyzing hydrodynamic interaction problems between
body and free surface waves, the boundary element method
(BEM) is currently more popular than volume methods such as
the finite element method (FEM), finite volume method (FVM),
etc., because of the dimensions reduced by one and a smaller
number of unknowns obtained. Once the free-surface Green
function is applied, the unknowns need only to be distributed
on the body surface. The computation cost and the workload to be
prepared before calculation can be reduced. Based on these
advantages, the constant panel method (CPM) introduced by Hess
and Smith [1] has been widely used [2,3]. In this method, the
submerged body surface alone is discretized by a set of quad-
rilateral or triangular flat panels. Pulsating sources or sinks are
placed at the centers of all panels, the strengths of these sources
being constant in each panel. For a body with a curved surface,
however, such a representation allows ‘leaks’ between panels,
with the result that large numbers of panels are required to
achieve sufficiently accurate results. Therefore, the use of HOBEM
for such problems has been investigated by Liu et al. [4], Eatock
Taylor and Chau [5], Eatock Taylor and Teng [6], Teng and Eatock
011 Published by Elsevier Ltd. All

.-c. Jiang),
Taylor [7]. In the HOBEM, the body surface can be discretized by
curvilinear triangular or rectangular elements. Each element is
described by fitting the nodes by an expansion using interpolating
polynomials as their shape functions. There are no ‘leaks’ at the
common boundary of the neighboring elements and the velocity
potentials are continuous on the whole body surface. This method
could give more accurate results than CPM for the same computa-
tional effort, together with minimum computer storage and
CPU time.

Unfortunately, traditional BEMs are computationally expen-
sive, because of a dense linear system of equations generated. The
computational cost (time expended and memory allocated) of
solving such a dense system is, at least, O(N2), where N is the
number of unknowns. It limits the use of the BEM only to
medium-size problems, even if the HOBEM is employed [8].
However, with the development of ocean engineering, large-scale
ships (such as FPSO), deepwater platforms, floating boatyards,
mobile offshore bases (MOB) and multiple floating bodies, etc.,
are given more attention [9,10]. The advantage of the BEM is
removed by the drawback for large-scale problems, so that the
computational cost of the BEM is larger than that of a robust
multi-grid technology applied to a domain-type method, such as
finite difference or finite element [11]. Therefore, the accelerated
technique must be implemented in the BEM.

Various methods have been developed to reduce the computa-
tional time and memory for the traditional BEM, such as the Fast
Multipole Method (FMM) and the precorrected Fast Fourier
rights reserved.
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Fig. 1. Definitions of computational domain and boundaries.
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Transform (pFFT) method. The central idea of these methods is to
systematically approximate the influence of the kernel between
source- and field-points, which are sufficiently far apart relative to
the element size, and to reduce the time for the matrix–vector
operation in the iterative method of the solution. The FMM is based
on the use of multipole expansion to the free surface Green function.
The influence of the Green function is calculated by systematic
application of Graf’s addition theorem of the Bessel and Hankel
functions following the hierarchical algorithm [12]. Utsunomiya and
Watanabe [13,14], Teng and Gou [15] applied this technique in the
HOBEM for floating boatyard problems. However, the FMM is
expected to be less efficient for deep water owing to slow conver-
gence of multipole expansion of the free-surface Green function
[16]. Compared with the FMM, the pFFT method can be proposed for
the integral equations with a general form of Green function and
solve the wave–body problem in infinite water-depth. In this
method, the input geometry is overlaid with a rectangular grid,
and the influence of the singularity distribution on the body
elements is represented by the influence from grid singularities
lying on the grid. This uniform grid representation allows the FFT to
be used for the efficient evaluation and for the product with the
solution vector in the iterative solution method. The computational
time for the evaluation and its product with the solution vector is
O(Ng log Ng) effort, where Ng is the number of nodes on the grid. This
method was employed in integral equation method by Phillips and
White [17] for electro-static and electro-dynamic applications, and
subsequently was extended to the analysis of wave–body interac-
tions by Korsmeyer et al. [18]. Kring et al. [19] applied this method
to large, complex offshore structures. However, the above works are
all based on the constant panel method. In this paper, a precorrected
Fast Fourier Transform higher-order boundary element method
(pFFT-HOBEM) is developed to reduce the computational time and
computer memory. Compared with the previous method, the
present method can be used with substantial reductions of compu-
ter time to achieve the same or higher accuracy. In addition, the
accuracy and continuity of the solution could be improved. This is
particularly important for structural analysis, as accurate values of
the local hydrodynamic pressure can be transferred to finite element
programs [20].

In Section 2, the mathematical description of the higher-order
boundary method for wave radiation–diffraction problem is
introduced. The basic theory and numerical procedure of the
pFFT-HOBEM is described in Section 3. In Section 4, the proposed
method is validated, and the efficiency is demonstrated through
examinations of the computation time and memory for isolated
bodies and multi-bodies.
2. Boundary integral equations

A Cartesian coordinate system x¼(x, y, z) is defined with z¼0
for the plane of the undisturbed free surface. It is assumed that
the fluid is incompressible and inviscid, and the flow is irrota-
tional. The fluid velocity is then represented by the gradient of the
velocity potential Fðx,tÞ satisfying the Laplace equation in the
fluid domain:

r
2F¼ 0 ð1Þ

As shown in Fig. 1, the fluid depth is infinite. The portion of the
body below the plane z¼0 is referred to as the submerged surface
SB. This surface is assumed to be impermeable, with its normal
velocity equal to the normal component of the fluid velocity. At
far-field from the structure, the waves are composed of a prescribed
incident waves and outgoing waves associated with diffraction and
radiation.
Under the assumption of small, unsteady motions relative
to the wavelength, the free surface boundary condition can be
linearized about its mean position. The body boundary condition
can also be linearized about its mean position if the structure is
not fixed. Owing to the time-harmonic dependence, the use of a
complex notation for all oscillatory quantities is applied. Thus the
velocity potential is expressed as:

F¼ Re½fe�iot � ð2Þ

where o is the incident regular wave angular frequency or angular
frequency of body motion. The complex spatial potential f must
satisfy the following linearized free surface SF, body surface SB and
infinite seabed boundary conditions besides the Laplace equation:

@f
@z
¼
o2

g
f, on SF ð3Þ

@f
@n
¼ vn, on SB ð4Þ

f¼ 0, z¼�1 ð5Þ

where g is the acceleration owing to the gravity, n and v
!

n are the
unit normal vector and the normal velocity of points on the body
surface, respectively. Generally, n points out of the fluid domain and
thus towards the inside of the body.

The linearization permits the decomposition of the velocity
potential in the alternative forms:

f¼fiþfdþfr ð6Þ

where fi is the potential of the incident wave, defined by:

fi ¼�
igA

o
ekzeikðx cosbþy sinbÞ ð7Þ

where A is the wave amplitude, and b is the incident wave angle.
The wave number k is the positive real root of the dispersion
relation o2 ¼ gk. Except for the incident wave potential fi, all the
other wave components are needed to satisfy the radiation condition
of outgoing waves in the far field, i.e., the Sommerfeld condition.

In Eq. (6), the diffraction potential fd and the radiation potential
fr owing to the presence of the body, are subject to their boundary
conditions as follows:

@fd

@n
¼�

@fi

@n
, on SB ð8Þ

@fr

@n
¼ v
!

n, on SB ð9Þ

The radiation potential fr represents the fluid disturbance due
to the motions of the body and can be expressed in the form:

fr ¼
X6

j ¼ 1

�ioxjfj ð10Þ
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where ðx1, x2, x3Þ are the amplitudes of body translation and
ðx4, x5, x6Þ ¼ ðax, ay, azÞ the amplitudes of body rotation. We define
fj as the radiation potential corresponding to a unit body velocity in
the jth body freedom. By substituting Eq. (10) into (9), the boundary
condition of the body surface is then expressed in the following
form:

@fj

@n
¼ nj, on SB ð11Þ

where ðn1, n2, n3Þ is the unit normal vector of the body surface,
ðn4, n5, n6Þ ¼ ðx�x0Þ � n, and x0 is the coordinates of the rotation
center. Similarly, note f0¼fi and f7¼fd, the body conditions of
diffraction and radiation potential, which can be written together as
follows:

@fj

@n
¼

nj, ðj¼ 1,. . .,6Þ

�
@f0
@n , ðj¼ 7Þ

(
ð12Þ

The infinite depth free surface Green function G(x,x0) is used as
follows [21]:

G¼ GTþGH ¼
1

r
þ

Z 1
0

lþk

l�k
elðzþzÞJ0ðlRÞdl ð13Þ

where r¼ ½R2þðz�z0Þ
2
�1=2, and R is the horizontal distance

between field and source points. In the development of the Green
function computation, Noblesse’s [22] and Newman’s [23] impor-
tant works on the approximation of free-surface Green functions
have been instructive.

Applying the second Green’s theorem to potential f and the
Green function Gðx,x0Þ, we can obtain the boundary integral
equation as follows:

afjðx0Þ�

ZZ
SB

@Gðx,x0Þ

@n
fjðxÞdS¼

�
RR

SB
njGðx,x0ÞdS, ðj¼ 1,. . .,6ÞRR

SB
Gðx,x0Þ

@f0ðxÞ
@n dS, ðj¼ 7Þ

8<
:

ð14Þ

where the free-term a is the solid-angle coefficients. Its value
changes with the position of the source point x0 and could be
evaluated according to the geometric character [24].

A set of linear equations are obtained after the integral Eq. (14)
discretized. Diffraction and radiation potentials on the body
surface can be resolved from the set of linear equations. Then
the exciting forces and hydrodynamic coefficients are obtained by
Bernoulli’s equation and integration of wave pressure over the
body surface. The exciting forces can be written into

F ¼ Re½f e�iot� ð15Þ

where

f ¼ ior
ZZ

SB

ðf0þf7ÞU n
!

dS ð16Þ

and the hydrodynamic coefficients can be expressed as

o2ajiþ iobji ¼o2r
ZZ

SB

fjnidS, ði,j¼ 1,. . .,6Þ ð17Þ

where aji and bji are added mass and radiation damping,
respectively.

For field points in the fluid, it is straightforward to evaluate the
potential as given by (14) with the solid-angle coefficients being
1. The appropriate representations in this case are

fjðx0Þ ¼

ZZ
SB

@Gðx,x0Þ

@n
fjðxÞdSþ

�
RR

SB
njGðx,x0ÞdS, ðj¼ 1,. . .,6ÞRR

SB
Gðx,x0Þ

@f0ðxÞ
@n dS, ðj¼ 7Þ

8<
:

ð18Þ

And then, the wave elevation can be written as

z¼ Re½Zðx,yÞe�iot� ð19Þ
where

Zðx,yÞ ¼
io
g

X7

j ¼ 0

fj ð20Þ

3. Precorrected fast Fourier transform method

In the higher-order boundary element method, the body sur-
face can be discretized by NE isoparametric elements. After
introduction of shape functions hkðx,ZÞ in each element, the
velocity potential and its derivatives within an element can be
written in terms of nodal values in the following form:

fðx,ZÞ ¼
XKe

k ¼ 1

hkðx,ZÞfk

@fðx,ZÞ
@x

¼
XKe

k ¼ 1

@hkðx,ZÞ
@x

fk

@fðx,ZÞ
@Z ¼

XKe

k ¼ 1

@hkðx,ZÞ
@Z fk

ð21Þ

where Ke is the number of nodes (6 for triangle, 8 for quadrilateral) in
the element, fk are the nodal potentials and ðx,ZÞ are local intrinsic
coordinates. By substituting this representation into Eq. (14), the
integral equation can be written in such a discretized form as

afjðx0Þ�
XNE

e ¼ 1

Z 1

�1

Z 1

�1
hkfk

j ðxÞ
@Gðx,x0Þ

@n
9Jeðx,ZÞ9dxdZ

¼

�
XNE

e ¼ 1

Z 1

�1

Z 1

�1
njGðx,x0Þ Jeðx,ZÞ

�� ��dxdZ, ðj¼ 1, � � � ,6Þ

XNE

e ¼ 1

Z 1

�1

Z 1

�1
Gðx,x0Þ

@f0ðxÞ

@n
Jeðx,ZÞ
�� ��dxdZ, ðj¼ 7Þ

8>>>>><
>>>>>:

ð22Þ

where Jeðx,ZÞ is the Jacobian matrix relating the global coordinates
and the local intrinsic coordinates in the e-th element.

For the traditional boundary element method, after assem-
bling the equations for each element, Eq. (22) can be equivalent to
computing the following set of linear equations:

½A�N�NffgN ¼ fBgN ð23Þ

where N is the number of unknowns. For the higher-order
boundary element method, it is the total number of nodes on
the body surface. [A] is a dense matrix. It requires O(N3) opera-
tions and O(N2) memory allocation to solve this equation by direct
method (such as Gaussian elimination). If the discretization of
Eq. (23) is sufficiently well conditioned, iterative methods such as
GCR can be used to reduce the problem computing cost from
O(N3) to O(N2). In fact, switching from the direct method to
an iterative method has an added benefit that makes further
acceleration possible. The iterative method replaces the detailed
manipulation of matrix elements with matrix–vector products
in the direct method. This implies that the matrix is not explicitly
required if the iterative method is used. Therefore, the double-layer
integration and the single-layer integration in Eq. (14) are both
equivalent to computing the matrix–vector product, together:

d¼DU ð24Þ

As D is a dense matrix, it still requires O(N2) operations for
forming DU. However, it could be systematically approximated in
nearly N operations by separating D into two parts, i.e. Dnear and
Dfar. Dnear, associated with the nearby element-node contribution,
is represented explicitly. Note that Dnear is sparse, having nonzero
entries only by O(N). The contribution from the far elements,
dfar¼(D�Dnear)U, is approximated for rapid computation. In the
pFFT method, dfar is approximated by representing far elements
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with point singularities residing on a uniform grid. The fact that
all the point singularities are on a uniform grid makes it possible
to rapidly calculate potentials owing to those point singularities
using the Fast Fourier Transform (FFT). Fig. 2 is a schematic
diagram of the steps in the algorithm of the pFFT method. Instead
of computing all interactions directly, one must follow a series of
steps including grid set-up, projection, computing grid potentials,
interpolation and direct interaction and precorrection:
(1)
Fig.

Fig.
lepip

Fig. 4. Two-dimensional pictorial representation of the grid projection scheme.
Grid set-up:
Consider the right-parallelepiped overlaying the problem geo-
metry after it has been discretized by isoparametric elements.
The right-parallelepiped can be subdivided into Mx�My�Mz

array of small cubes formed by the grid so that each small cube
contains only a few elements. We refer to these small cubes as
cells. In each cell, grid singularities are set in the direction of x, y

and z. Empirical results indicate that a 3�3�3 array of grid
singularities per unit cell will approximate the potential well
enough to ensure that the solution to Eq. (24) is accurate to 0.1%
[25]. And then the number of total grid singularities Ng can be
obtained. Apparently, Ng is coarser than N, as shown in Fig. 3.
The grid singularities extends outside the problem domain in
Fig. 3(b) because the number of grid points is required to be a
factor of two for FFT operations.
The relationship of cells, elements and nodes should be estab-
lished in this step. For the higher-order boundary element
method, whether both the element and the node belonging to
the same cell need to judge, because the projection step is based
on the integral over elements, and the interpolation step need to
calculate the potential on the nodes. In this statement, an
element belongs to a cell if the centroid of the element is in
this cell. The nearby elements of a given element are those
elements in the 27 cells that share a vertex with the given
2. Two-dimensional representation of the precorrected-FFT (pFFT) algorithm.

3. Sketch of the right-parallelepiped and grid singularities (a) Right-paralle-

ed. (b) Grid singularities.
element’s cell. They will be used at the ‘‘Direct interaction and
precorrection’’ step.
(2)
 Projection:
Numerically evaluate the projection operator that can replace
the singularity distributions on the body elements with an
equivalent set of grid singularities. These are matrices deduced
from a collocation problem for each cell that matches, at a set of
test points, the potential due to the grid singularities with the
potential due to the singularity distributions on the elements
(Fig. 4). Since the projection is made once for each element, this
step requires O(N) computational time. The essential idea in this
step is that the operator is based on the fundamental solution of
the Laplace equation, not on the particular Green function for
the problem. For wave sources distribution, the grid singula-
rities’ strength qi can be sought in:

XI

i ¼ 1

qi
1

:rj�ri:
¼
XKm

k ¼ 1

sk

Z
k

1

:rj�rk:
drk j¼ 1,J ð25Þ

where I grid points, J projection test points and Km elements are
in the cell with the source distributions sk. The similar expres-
sion for replacing dipole distributions with grid singularities is

XI

i ¼ 1

qi
1

:rj�ri:
¼
XKm

k ¼ 1

sk

Z
k

@

@nx

1

:rj�rk:

 !
drk j¼ 1,J ð26Þ

The precision of the above method is mainly dependent on the
situation of the test points. A good choice are Gaussian quad-
rature points on a surrounding sphere, whose radius is twice
that of the diameter of the cell [26].
(3)
 Computing grid potentials
This step is to find the potential on the grid points owing to
these grid singularities on the same set of grids. This evaluation
of the node-to-node interactions on a grid structure with
uniform spacing is a three-dimensional discrete convolution.
The influences between the grids points on the same cell,
including the self-influence, are not relevant, and arbitrary
values may be assigned to them. The influence of the grid
singularities is decomposed into two components, one from
GT(x�x0, y�y0, z�z0), and the other from GH(x�x0, y�y0, z�z0)
in Eq. (13). On a uniform grid, GT leads to a triply nested Toepliz
matrix, GH to a doubly nested Toepliz matrix in x and y and a
Hankel matrix in z. From these matrices, it is straightforward to
construct two circulant matrices with periodic elements as
shown in [27]. Finally, the products of the circulant matrices
and grid singularities’ strength qi can be evaluated efficiently
from the relation Cqi¼F –1[F(C1)F(qi)] where C1 denotes the first
row of the circulant matrices, and F and F –1 denote the discrete
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Fourier transform and the inverse Fourier transform, respec-
tively [28]. The computational effort for the convolution is
O(Ng log Ng), and the memory allocation is O(Ng).
(4)
 Interpolation:
The interpolation step is to calculate the potential at each
node on the body owing to the potentials at a set of grid
points. This operator is the transpose of the complementary
projection operator for point sources (nodes), not element
distributions, as we are using a collocation method. That is,
we use the transpose of the operator implied by

XI

i ¼ 1

fi

1

:rj�ri:
¼
XKn

k ¼ 1

fk

1

:rj�rk:
j¼ 1,J ð27Þ

where Kn is the total number of nodes in the cell. Again, it is
important to note that only the fundamental solution of the
Laplace equation appears in the definition of these operators
[19]. In addition, interpolation Eq. (27) is adapted for both
source and dipole distribution.
(5)
 Direct interaction and precorrection:
The previous four steps complete the matrix–vector multiplica-
tion in Eq. (24) by an indirect manner. The final step is to correct
the influence of the parts of nearby elements for which the above
‘interpolation–projection’ method is not valid. Use the projection
operators, the Green function, and the interpolation operators to
pre-compute and subtract from these nearby elements’ influ-
ences. And then, directly compute the nearby elements’ influ-
ences for each element using the conventional calculations.
In this paper a GCR iterative method is employed. The right-
hand side of Eq. (14) is computed first, and the result is
regarded as an iterative initial value of the left matrix–vector
operation. The efficiency of the pFFT method could be further
X Y

Z

Fig. 5. Sketch of the mesh on the truncated vertical circular cylinder.

Fig. 6. Exciting force on the truncated vertical circular
improved through exploiting the frequency-independence of
many of the algorithm’s steps. Only the ‘‘Direct Interaction
and Precorrection’’ and ‘‘Computing Grid Potentials’’ steps are
frequency dependent. This means that the frequency inde-
pendent set-up steps of the algorithm may be performed once
and re-used at each frequency in a sweep of frequencies for
radiation and diffraction analysis.
4. Validation and discussion

In this paper, all numerical codes have been implemented in
Visual FORTRAN 6.5, and the computations have been tested on a
computer with a 2.01 GHz processor and 2 GB of RAM. The
calculation is carried out in the double precision. For the resulting
matrix equation, the GCR is used, and the iteration is stopped
when the module of the relative residual is smaller than 10�5.

4.1. Truncated cylinder

As an example, a truncated vertical circular cylinder of radius
r¼1.0 and draft T¼1.0 in deep water is considered. The rotation
center is defined at the point (0, 0, 0). A mesh scheme of
8�24þ24�8 (circular, 24; vertical, 8; radius at the bottom, 8)
for the truncated cylinder is shown in Fig. 5. The comparisons of
exciting forces and hydrodynamic coefficients between the pre-
sent method and a traditional HOBEM [7] are given in Figs. 6–8.
The non-dimensional wave number range ka¼0.1–2.0 and
Dka¼0.1 are considered in the present study. From the figures,
it can be seen that good agreements are obtained between the
traditional HOBEM and the present method.

To further validate the present method, the comparison of
wave elevation around the truncated cylinder, at points (�1.1, 0),
(0.0, 1.1) and (1.1, 0.0), with the traditional HOBEM is also shown
in Fig. 9. Apparently, the results of present method agrees well
with the traditional HOBEM. From all these comparisons, the
accuracy of the present method is validated.

For illustrating the advantages of the present method in comput-
ing cost and computer memory, the above truncated cylinder at the
non-dimensional wave number ka¼1.0 is taken as an example. Four
different methods are chosen for different discretization, and the
corresponding results are shown in Fig. 10. The abbreviation N

stands for the number of unknowns. ‘‘HOBEM-Direct’’ and ‘‘HOBEM-
Iterative’’ indicate the traditional HOBEM with direct and iterative
solvers, respectively. ‘‘HOBEM-pFFT A’’ and ‘‘HOBEM-pFFT B’’ indi-
cate the HOBEM accelerated by pFFT overlaying the problem
geometry with 7�7�7 and 15�15�15 cells, respectively. These
cell-overlay schemes could make the number of grid points close to
a factor of 2 for advanced efficiency.
cylinder. (a) Surge. (b) Heave. (c) Pitch.



Fig. 7. Added mass of the truncated vertical circular cylinder. (a) Surge, (b) Heave. (c) Pitch. (d) Cross-coupling surge and pitch.

Fig. 8. Radiation damping of the truncated vertical circular cylinder, (a) Surge. (b) Heave. (c) Pitch. (d) Cross-coupling surge and pitch.
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Fig. 9. Wave elevation near truncated vertical circular cylinder. (a) (�1.1, 0.0). (b) (1.1, 0.0). (c) (0.0, 1.1).

Fig. 10. Comparison of the computing cost and computer memory (a) Computing time. (b) Computer memory.

S-c. Jiang et al. / Engineering Analysis with Boundary Elements 36 (2012) 404–415410
As for computing cost, ‘‘HOBEM-Iterative’’ is faster than ‘‘HOBEM-
Direct.’’ If the number of unknowns is larger than 1000 and 1700,
HOBEM-pFFT A and HOBEM-pFFT B are faster than traditional
HOBEM, respectively. If the number of unknowns is larger than
2800, HOBEM-pFFT B has a lower computing cost than HOBEM-pFFT
A. This means that the greater number of cells in the pFFT method
should be chosen to reduce the computing cost if the unknowns are
large. As for computer memory, the pFFT methods increase linearly
with the increase of the unknowns. If the number of unknowns is
larger than 1000 and 2600, the HOBEM-pFFT A and HOBEM-pFFT B
need less storage than the traditional HOBEM, respectively. Another
observation is that the computer storage of the HOBEM-pFFT B is
always larger than that of the HOBEM-pFFT A, and that the additional
memory is nearly constant for different numbers of unknowns. This
is the reason that the major difference between these two systems is
in the computing FFT and the inverse-FFT. These steps are indepen-
dent of the number of unknowns. The HOBEM-pFFT A needs
32�32�32 units of memory in point singularities (wave sources
or dipoles), but the HOBEM-pFFT B needs 64�64�64 units of
memory. This means that the computer memory would be increased
in the present method if more cells are chosen. Actually, even if the
HOBEM-pFFT B with 5000 unknowns is chosen, the computer
memory is still less than 200MB. It is apparent that computer
memory cannot become the major factor that limits the use of the
present method in an ordinary computer. Therefore, the optimization
method for minimizing the computing cost is suggested.

In the process of the present method the comparisons of
computing cost in different parts are given in Table 1. A and B
stand for HOBEM-pFFT A and HOBEM-pFFT B schemes, respectively.
From this table, we can see that the cost of Project and Interpolation
steps are always small. The major parts of the computing cost are at
the Grid Potentials and Precorrected steps. The Grid Potentials step
considers the same computing cost in different unknowns. They are
about 4.6s and 63s for HOBEM-pFFT A and HOBEM-pFFT B,
respectively. Actually, this is only the node-to-node interactions
between point singularities on the grid structure at the Grid
Potentials step. For the HOBEM-pFFT A, it is a three-dimensional
discrete convolution by the FFT and inverse-FFT methods for 32
points per dimension. However, it becomes 64 points per dimension
when the HOBEM-pFFT B is used. If the number of unknowns is
small, the computing cost at the Precorrected step is small, depend-
ing on the number of unknowns. The major computing cost is at the
Grid Potentials step, which leads to a lower efficiency than the
traditional HOBEM, especially for HOBEM-pFFT B. With the increase
of unknowns, the major part of the computing cost is at the
Precorrected step. In this case it can be understood that the whole
problem domain is divided into Nc sub-domains, where Nc is the
number of cells. So the computing cost is reduced from O(N2) by the
traditional HOBEM with iterative solver to Nc�O(Ns

2), Ns¼N/Nc by
the present method. This is also the reason that the HOBEM-pFFT B
scheme (Nc¼15) is faster than the HOBEM-pFFT A scheme (Nc¼7)
by reason of a large number of unknowns.

4.2. Four-cylinder structure

To further state the superiority of present method, another
computation is carried out for a fixed four-cylinder structure with
radius r¼a and draft T¼3a in deep water (Fig. 11). The centers of



Fig.11. Four-cylinder structure in regular wave.
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Fig. 12. Sketch of the meshes on the body surface and free surface on four-

cylinder problem.

Table 1
Comparison of the CPU cost (s) in different parts of pFFT methods.

N Project Grid Potentials Interpolation Precorrected Others Total

A B A B A B A B A B A B

97 0.17 0.25 4.81 60.00 0.38 3.59 4.28 21.48 0.00 0.02 9.64 85.34

217 0.36 0.48 4.55 62.75 0.41 3.63 9.21 23.58 0.01 0.03 14.53 90.47

385 0.61 0.80 4.53 63.59 0.44 3.64 18.31 33.19 0.02 0.03 23.91 101.25

481 0.69 0.95 4.63 64.03 0.42 3.63 23.31 41.27 0.02 0.02 29.06 109.89

721 0.98 1.31 4.61 64.06 0.45 3.69 37.84 49.67 0.02 0.05 43.91 118.78

961 1.36 1.73 4.59 62.84 0.47 3.69 46.55 67.17 0.03 0.06 53.00 135.50

1441 1.97 2.91 4.50 63.33 0.50 3.77 78.87 86.81 0.06 0.06 85.91 156.88

1729 2.33 3.41 4.61 62.24 0.55 3.79 93.70 106.73 0.06 0.07 101.25 176.23

2305 3.08 3.73 4.58 62.92 0.58 3.81 147.28 131.64 0.05 0.08 155.56 202.19

2881 3.84 4.42 4.63 67.61 0.64 3.91 220.31 152.45 0.08 0.11 229.50 228.50

3457 4.59 5.14 4.64 63.73 0.72 4.00 314.55 202.52 0.11 0.09 324.61 275.48

4033 5.31 6.06 4.67 68.09 0.69 4.05 382.73 225.63 0.13 0.11 393.53 303.94

4609 10.53 10.84 4.63 64.08 0.78 4.02 457.03 266.42 0.11 0.14 473.08 345.50

5185 6.81 7.83 4.66 63.42 0.84 4.06 558.33 302.00 0.14 0.11 570.78 377.42

Table 2
Coordinates of test points near four-cylinder structure.

Cylinder Situation Serial number Coordinates

Cylinder 1 Inside the structure A (–1.728a, 0)

Outside the structure B (–3.928a, 0)

Cylinder 2 Inside the structure C (1.728a, 0)

Outside the structure D (0, 3.928a)

Cylinder 3 Inside the structure E (0, 1.728a)

Outside the structure F (0, 3.928a)

Cylinder 4 Inside the structure G (0, –1.728a)

Outside the structure H (0, –3.928a)
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four cylinders locate in ð72:828a, 0Þ and ð0,72:828aÞ, respec-
tively. Waves are from the direction along the angle of y¼451, and
the wave amplitude is A. The quadrilateral unstructured meshes
of the size 0.2a are employed on the wetted body surface and the
free surface, as shown in Fig. 12. Based on the conclusion of Evans
and Porter [29], the near-trapping resonance would occur for
ka¼1.66. In this study, the non-dimensional wave number
ka¼1.66 is considered, along with the non-dimensional wave
number range ka¼0.1–2.0 and Dka¼0.1 are considered.

For validation of the present method, wave elevation distribu-
tion of eight points are selected here. The locations of these points
are tabulated in Table 2 and the comparison with the tradional
HOBEM is shown in Fig. 13. Apparently, the present results are in
good agreement with those of the traditional HOBEM. In here, a
distinctive feature is an apparent peak that occur near ka¼1.66 at
the inside points (A, C, E, G) of the structure. At the same time, a
negative peak occur at points D, F and G. In addition, the wave
elevation of point B is smaller than that of point A, though it is a
peak near ka¼1.66. That means the wave energy inside of the
four-cylinder structure is larger than that of outside when near-
trapping phenomenon happen.

The magnitudes of the horizontal and vertical wave forces on
different cylinder are shown in Figs. 14 and 15. The present
method and the traditional HOBEM are in good agreement. From
Fig. 14, we can be seen that a magnitude of the peak appears on
each cylinder near ka¼1.66. It is an obvious relationship between
horizontal exciting force and wave elevation around the cylinder,
especially the water level difference and phase between inside
and outside of the structure.

The non-dimensional wave elevation distributions around
four-cylinder structure are shown in Fig. 16. When ka¼1.00, the
wave elevation is a little larger at the back of structure for long
period wave. The wave reflection is stronger when ka¼2.00, so
that the wave elevation at downstream of the structure become
smaller. For the case of ka¼1.66, wave energy is focused inside of
the structure, which leading to the inside wave elevation large.
Whereas, the outside wave elevation is quite small, especially at



Fig. 13. Variation of wave elevation at typical points with ka. (a1) Point A. (b1) Point C. (c1) Point E or G. (a2) Point B. (b2) Point D. (c2) Point F or H.

Fig. 14. Horizontal wave force on cylinder. (a) Cylinder 1, (b) Cylinder 2, (c) Cylinder 3 or 4.

Fig. 15. Vertical wave force on cylinder. (a) Cylinder 1, (b) cylinder 2, (c) cylinder 3 or 4.
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Fig. 16. Wave distribution around four-cylinder structure. (a) ka¼1.00, (b) ka¼1.66, (c) ka¼2.00.

Table 3
Convergent examinations of meshes for exciting forces on the entire structure.

N Surge exciting forces (103 kN) Heave exciting forces (103 kN) Pitch exciting forces (103 kN)

T¼5 s T¼10 s T¼15 s T¼20 s T¼5 s T¼10 s T¼15 s T¼20 s T¼5 s T¼10 s T¼15 s T¼20 s

1272 0.52 8.10 5.42 8.34 0.09 3.28 6.20 23.11 16.43 486.53 1957.30 4628.30

3208 3.09 6.13 6.08 7.92 0.06 2.04 7.10 21.33 19.93 564.78 1704.00 4779.30

4880 3.46 5.52 6.29 7.73 0.05 1.71 7.31 21.12 20.42 596.94 1662.70 4817.10

12240 3.46 5.52 6.30 7.73 0.05 1.70 7.30 21.11 20.37 595.87 1660.90 4814.50

X Y

Z

Fig. 17. Sketch of the mesh on the double array of 2�8 cylinders.
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the downstream of the structure. One would perhaps more shelter-
ing and that 9Z/A9o1. This behavior is similar as the Neumann
resonance mode by Walker and Eatock Taylor [30].

4.3. Double array truncated cylinders

To validate the present method in a more complex application, a
double array of 2�8 truncated cylinders in head seas of a unit wave
amplitude with different periods is considered. Such a type of
configuration can be proposed for floating bridges, floating airports
and mobile offshore bases etc. The radius and draft of each truncated
cylinder might be defined as 12 m and 20 m, respectively. The
distance between the axes of adjacent cylinders is 2d¼64 m.
Apparently there is a clear interference that could not be predicted
accurately by analyzing only a single cylinder. Convergent examina-
tions of meshes are performed for surge, heave and pitch exciting
forces on the entire structure. The whole structure is discretized with
1272, 3208, 4880 and 12240 nodes. As shown in Table 3, the surge,
heave and pitch exciting forces are calculated under different mesh
schemes for the periods T¼5 s, 10 s, 15 s and 20 s. It is apparent that
the 4880-node scheme should be chosen, and the sketch of this mesh
scheme is shown in Fig. 17. In this figure the z-axis of the coordinate
system is doubly enlarged for a clearer display.

Numerical results of the 4880-node scheme are shown in Fig. 18.
Based on the analysis in section 4.1, the HOBEM-pFFT B scheme is
chosen for a lower computing cost. The incident wave periods range
from 5 s to 20 s. The time interval Dt is chosen as 0.1 s for 5–10 s,
and 1.0 s for 10 s–20 s. For heave force, the present method could
obtain enough precision for all the periods. For the surge force and
pitch moment, it can be seen that the present method could obtain
accurate results for most periods, although it does not capture the
extreme large surge force near T¼6.0 s owing to the influence of
near-trapping mode resonance, which causes the tendency of the
linear system to be ill-conditioned [31]. This leads to a large error if
the iterative solver is employed.

To further illustrate the computing efficiency of the present
method, Table 4 gives the computing costs for different wave
periods. The ‘‘symmetry’’ in this table indicates that the two
planes of symmetry are exploited in the traditional HOBEM with
either direct or iterative solvers. ‘‘Acc%’’ is the ratios of the other
methods to the traditional HOBEM marked by ‘‘Direct.’’ Appar-
ently the present method is the fastest one in these five schemes.
Moreover, the symmetry optimizations must be canceled if
structures have no symmetry planes. In addition, the size of the
structure is usually larger than that in this example, such that a
mobile offshore base is generally made up of 50 cylinders [32].
Therefore, the present method can produce a higher efficiency in
engineering. Finally, for different wave periods, the computing
cost of the present method is nearly the same, which is quite
different from the FMM [33].
5. Conclusions

In this paper, the pFFT higher-order boundary element method is
successfully applied to reduce the computational cost and memory



Fig. 18. Exciting forces on the entire double array of 2�8 truncated cylinders in head seas of 1m wave amplitude at different periods. (a) Surge force. (b) Heave force.

(c) Pitch moment.

Table 4
Comparison of CPU cost(s) using different methods for the double array of 2�8

truncated cylinders.

Period Direct Iterative Direct-

symmetry

Iterative-

symmetry

pFFT

method

5 2724.64 900.55 503.75 428.23 305.61

6 2759.81 922.06 503.89 432.16 301.63

7 2762.16 915.58 502.34 424.50 300.61

8 2749.09 896.64 498.16 412.09 302.72

9 2742.94 896.11 501.48 414.64 305.05

10 2740.27 895.98 500.28 415.84 309.13

11 2747.63 906.72 494.89 422.91 306.16

12 2707.02 874.62 495.17 411.11 305.55

13 2727.02 884.01 494.53 410.50 305.34

14 2759.06 897.16 493.86 407.63 305.28

15 2745.03 892.75 493.67 410.23 304.59

16 2745.47 895.86 496.52 413.13 304.17

17 2740.06 890.08 496.08 410.05 304.41

18 2716.11 877.79 495.59 409.73 305.06

19 2686.80 864.80 495.25 411.41 304.98

20 2686.23 864.09 494.63 410.97 307.31

Average

time

2732.49 889.44 496.60 413.20 305.03

Acc.% 100.00% 32.55% 18.17% 15.12% 11.16%
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by O(N log N) and O(N) in analyzing the hydrodynamic problems,
respectively. By using an infinite deep free-surface Green function,
the present method can be easily extended to infinite deep water,
which is superior to the Fast Multipole method (FMM). According to
the numerical experiment, the optimal variable of pFFT mesh is
recommended to minimize time lost. The computational results
show that the present method is more efficient than the traditional
boundary element method for large-scale problems. In the present
method, the major computing cost is at the step of ‘‘direct interac-
tion and precorrection’’ if the number of unknowns is large. The
solution of the linear system varies by the present method and is
independent as to the period of the incident waves. In the end, a
four-cylinders structure and a double array of 2�8 truncated
cylinders is calculated. The results show that the present method
could obtain a high precision for the multi-bodies problem. This
method is faster than the traditional HOBEM, even if two planes of
symmetry are exploited in the latter. Therefore, the proposed
technology is feasible for solving large-scale wave–body problems.
Acknowledgments

The present work is supported by the National Natural Science
Foundations of China (Grant nos. 11072052 and 50921001), the
Important National Science & Technology Specific Projects of
China (Grant no. 2008ZX05026-02) and the Open Fund of Key
Laboratory of Renewable Energy and Gas Hydrate of Chinese
Academy of Sciences (Grant no. Y007ka).
References

[1] Hess JL, Smith AMO. Calculation of non-lifting potential flow about arbitrary
three-dimensional bodies. J Ship Res 1964;8:22–44.

[2] Garrison CJ. Hydrodynamic loading on large offshore structures: three-
dimensional source distribution method. Numer Methods Offshore Eng 1978.

[3] Korsmeyer FT, Lee CH, Newman JN, Sclavounous PD. The analysis of wave
effects on a tension-leg platform. In: Proceedings of the offshore mechanical
and arctic engineering, vol. 2; 1988. p. 1–15.

[4] Liu YH, Kim CH, Lu XS. Comparison of higher-order boundary element and
constant panel methods for hydrodynamic loadings. J Offshore Polar Eng
1991;1(1):8–17.

[5] Eatock Taylor R, Chau FP. Wave diffraction—some developments in linear and
non-linear theory. Offshore Mech Arctic Eng 1992;114:185–94.

[6] Eatock Taylor R, Teng B. The effect of corners on diffraction/radiation forces
and wave drift damping. In: Proceedings of the offshore technology con-
ference, OTC7187, Houston ;1993. p. 571–81.

[7] Teng B, Eatock Taylor R. New higher-order boundary element methods for
wave diffraction/radiation. Appl Ocean Res 1995;17(2):71–7.

[8] Teng B, Saito M, Kato S. Mean drift force on a huge shallow drafted floating
barge. In: Proceedings of the 13th ocean engineering symposium, Tokyo;
1995. p. 337–344.

[9] Maeda H, Masuda K, Miyajima S, Ikoma T. Hydroelastic responses of pontoon
type very large floating offshore structure. J Soc Nav Archit. Jpn 1995;178:
203–12.

[10] Sun L, Taylor PH, Eatock Taylor R. First and second order wave effects in
narrow gaps between moored vessels. In: Proceedings of marine operation
specialty symposium, MOSS, Singapore; 6–7 March 2008. p. 113–124.

[11] Zheng YH, Shen YM, Xia J. Numerical solution of a mathematical model for
water waves in large coastal areas. Atca Oceanol Sin 2000;19(4):17–23.

[12] Greengard L, Rokhlin V. A fast algorithm for particle simulations. J Comput
Phys 1987;73:325–48.

[13] Utsunomiya T, Watanabe E, Nishimura N. Fast multipole algorithm for wave
diffraction/radition problems and its application to VLFS in variable water
depth and topography. In: Proceedings of OMAE ’01–5202.

[14] Utsunomiya T, Watanabe E. Wave response analysis of hybrid-type VLFS by
accelerated BEM. Hydroelasticity in marine technology.2003 pp. 297–303.

[15] Teng B, Gou Y. Fast multipole expansion method and its application in BEM
for wave diffraction and radiation. Proceedings of the international offshore
and polar engineering conference, ISOPE 3; 2006. p. 318–325.

[16] Lee C-H, Newman JN. Computation of wave effects using the panel method.
Numer Models Fluid-Struct Interact 2004.

[17] Phillips JR, White JK. A precorrected-FFT method for electrostatic analysis of
complicated 3-D structures. IEEE Trans Comput-Aided Des 1997;16(10):
1059–72.

[18] Korsmeyer FT, Klemas TJ, White JK, Phillips JR, Fast hydrodynamic analysis of
large offshore structures. In: Proceedings of ninth international offshore and
polar engineering conference, ISOPE, Brest; 1999. p. 27–34.

[19] Kring D, Korsmeyer T, Singer J, White J. Analyzing mobile offshore bases
using accelerated boundary element methods. Mar Struct 2000;13:301–13.

[20] Newman JN, Lee C-H. Boundary-element methods in offshore structure
analysis. J Offshore Mech Arctic Eng 2002;124:81–9.

[21] John F. On the motion of floating bodies II. Commun Pure Appl Math
1950;3:45–101.

[22] Noblesse F. The Green function in the theory of radiation and diffraction of
regular waves by a body. J Eng Math 1982;16:137–69.



S-c. Jiang et al. / Engineering Analysis with Boundary Elements 36 (2012) 404–415 415
[23] Newman J.N.. The approximation of free-surface Green functions. In: Wave
asymptotics—Proceedings of the F. Ursell retirement meeting, Cambridge
University Press; 1992. p. 107–135.

[24] Teng B, Gou Y, Ning DZ. A higher order BEM for Wave-current action with
structure—directory computation of free-term coefficient and CPV integrals.
China Ocean Eng 2006;20(3):395–410.

[25] Korsmeyer T, Phillips J, White JA. Precorrected-FFT algorithm for accelerating
surface wave problems. Presented at the 11th workshop on water waves and
floating bodies, Hamburg; 1996.

[26] Phillips J. Error and complexity analysis for a collocation-grid-projection plus
Precorrected-FFT algorithm for solving potential integral equations with
Laplace or Helmholtz kernels. In: Colorado conference on multigrid methods;
April 1995.

[27] Loan CV. Computational frameworks for the fast Fourier transform. Phila-
delphia: SIAM; 1992.
[28] Strang G. Introduction to applied mathematics. Wellesley, Massachusetts:
Wellesley-Cambridge Press; 1986.

[29] Evans DV, Porter R. Near trapping of waves by circular arrays of vertical
cylinder arrays [J]. J Fluids Struct 1991;5:1–32.

[30] Walker DAG, Eatock Taylor R. Wave diffraction from linear arrays of cylinders
[J]. Ocean Eng 2005;32:2053–78.

[31] Newman JN. Process in wave load computation on offshore structures, OMAE.
Canada: Vancouver, B.C.; 2004.

[32] Lee C-H, Newman JN An assessment of hydroelasticity for very large hinged
vessels. In: Proceedings 2nd international conference on hydroelasticity in
marine technology, Kyushu, Japan; 1998. p. 27–36.

[33] Utsunomiya T, Watanabe E. Accelerated higher order boundary element
method for wave diffraction/radiation problems and its applications. In:
Proceedings 12th international offshore and polar engneering conference,
Kyushu, Japan, vol. 3; 2002. p. 305–312.


	A precorrected-FFT higher-order boundary element method for wave-body problems
	Introduction
	Boundary integral equations
	Precorrected fast Fourier transform method
	Validation and discussion
	Truncated cylinder
	Four-cylinder structure
	Double array truncated cylinders

	Conclusions
	Acknowledgments
	References




